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Abstract— In Simultaneous Localization and Mapping
(SLAM), good quality maps could play an important role
beyond the implicit benefits they have to the localization
problem. For example, good quality SLAM maps could be
used as ‘pre-maps’ for generating maps with a higher semantic
meaning and geometric structure, such as in 2D CAD maps
in which doors, windows, and other entities carry meaning.
Unfortunately, in its raw form, the quality of a SLAM map
one can obtain is limited by several factors, some due to
software and others due to hardware. This paper proposes
to address this problem by converting raw SLAM maps to
CAD maps based on a generative adversarial network. The
paper also investigates the inverse problem, that of generating
SLAM maps from 2D CAD drawings. We do so by investigating
two approaches, one based on an analytical model, the other
on a generative adversarial network. Experiments demonstrate
both qualitatively and quantitatively the success of the proposed
approaches.

I. INTRODUCTION

Autonomous mapping of an environment has become an
important topic that some researchers have recently taken
interest in. What they have been mostly focusing on is
generating accurate and efficient maps. Examples include
the mapping of civil engineering construction sites in order
to survey the progress of work throughout, or to assess the
conformity of as-is constructions to as-planned architectural
drawings. Unfortunately, the low quality of maps generated
by current SLAM solutions limits their use in their raw form
to little beyond localization, and as such require considerable
post-processing to transform them into maps possessing
geometric and semantic meaning.

In this paper, we propose addressing this problem by
directly transforming raw SLAM maps to 2D CAD maps,
without the need to improve the SLAM algorithm itself
nor endow the autonomous robot with high quality sensors.
Instead, we propose learning the transformation between
raw SLAM maps and 2D CAD maps using a generative
adversarial network (Fig. 1).

To teach our proposed neural network, a dataset of cor-
responding SLAM and CAD maps is needed. We struggled
to find any collection of SLAM maps in the literature that
we could use for the sake of training. We therefore found it
necessary to generate our own dataset of SLAM maps with
corresponding CAD ground truth maps that we used to train
our proposed machine learning algorithm.
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Fig. 1. Automatically generating a CAD map using machine learning
(middle) from a SLAM map (left); ground truth CAD map on the right.

Given the relatively high number of maps we needed for
training, and the relatively high overhead of creating real
SLAM maps using real robots, we resorted instead to a
robotic simulator to create the desired maps. Although this
solution was advantageous to using a real robot, the time
necessary to run each of the simulations was also grueling,
and the processing power and memory usage were also
high. This experience led us to investigate and propose two
solutions alternative to simulations to create SLAM maps,
one based on parametric modelling and the other on machine
learning. Through parametric modelling, multiple hypotheses
of SLAM maps from one CAD map can be generated each
using a different robot trajectory. This is opposed to the
learning based approach where the trajectory is not taken
into consideration, resulting in only one possible SLAM
map hypothesis that is independent of any specific robot
trajectory. On the flip side, the learning technique allows
for a deeper understanding and modeling of the effect of the
shape of the environment on the output error.

The contributions of this paper includes the following:
1) an automated system to transform SLAM maps to

CAD drawings using machine learning,
2) an automated system to transform CAD maps into a

SLAM maps using machine learning on one hand or
parametric modelling on the other,

3) creation of a publicly available dataset of SLAM- and
CAD-map pairs

These contributions are made possible through machine
learning and parametric modeling, which requires us to delve
into the literature for both.

A. Machine Learning

To correct SLAM maps using machine learning, image to
image translation needs to be performed. In our application,
both the input and target images are 2D occupancy grid
maps, in which piecewise deformations can occur such as
in transformations of handwritten digits to printed digit
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[1], or that of geometrically rectifying digital imagery [2].
However both of these applications are relatively simple
requiring relatively simple architectures. Our application is
more complex and requires a more convoluted architecture.

Another application is that of rectifying fingerprints [3].
This technique requires the training dataset to include dis-
placement fields, which in our case is not available because
the maps are generated in real time inside the simulators.

The application in which the transformation best lends
itself to our problem is that of anime to real-life clothing,
where colors mainly stay the same and local and global
deformations are present. The state of the art in anime to
clothing is [4], which builds its network on the most widely
used architecture in image to image translation known as
pix2pix [5], but with a novel consistency loss.

B. Parametric Modeling

To automatically generate a robotic map from CAD maps
in a parametric manner, the modeling of SLAM error
sources becomes of prime interest. This review will focus
on modelling methods for calibration of exteroceptive and
proprioceptive (2D LIDAR and odometry) sensors mounted
on a differentially driven robot, such as the one used in our
work.

Previous work in the literature exist on the modeling of
3D LIDARs [6] and on airborne systems [7], as opposed to
this work’s focus on 2D ground LIDARs. Other papers use
a stochastic experimental approach [8] or a Kalman filter
[9] for calibration. These approaches are not useful for us
since they are experimental and don’t rely on meaningful
physical parameters. Conversely, we adopt the approach of
Mader et al. [10], who formulate a model for LIDAR sensors
and include errors of different sources and contributions.

On the odometry side, we consider wheel encoders as
the onboard sensors and model their errors. Borenstein et
al. [11] did not include scaling errors and assumed inde-
pendence between wheelbase and wheel radius errors. In
Abbas et al. [12], the effect of non-systematic errors on
calibration is decreased by having the test path included
as one of the parameters. As for the work of Lee et al.
[13], dependency between wheelbase and wheel radius errors
was introduced; however, only straight motion was included
and some trigonometric simplifications were assumed as
was done in [11]. Furthermore, [14] took into consideration
scaling, wheel diameters, and wheelbase errors.

Other methods rely on a more general modelling of the
system. Such methods include optimization and Kalman filter
based methods [15], methods that don’t identify the contri-
bution of the different sources of error [16], and methods
that generalize the errors by using corrective factors [17].

In our work, we adopt a more detailed parametric mod-
elling approach such as in the methods of [13], [18], [19],
which consider a dependency between wheel base and wheel
radius errors. Given the stated superior performance, we
adopt the method of Tomasi et al. [19].

II. PROPOSED SLAM-TO-CAD MAPPING SYSTEM

The architecture used in our SLAM to CAD system
is that of Tango et al. [4] (Fig. 2), which relies on a
generative adversarial network (GAN). GANs are neural
networks that are made up of two sub-models—a generator
and a discriminator—, which compete against each other
to eventually reach an optimal state where the output is
new (generator role) but doesn’t look fake (discriminator
role) [20]. The anime2clothing GAN architecture in Fig.

Fig. 2. Architecture of anime2clothing [4]

2 is made up of a generator G with a U-net structure, a
traditional real/fake discriminator, and an additional domain
discriminator Dd . The domain discriminator has a multi-scale
architecture, which handles high-quality images. The multi-
scale architecture uses multi discriminators, Dd1,Dd2,Dd3,
which are similar except for the difference in image scales.
Spectral normalization [21] is also applied on the discrimina-
tors following the Lipschitz constraint. In addition, instances
were augmented by adding false targets, which are simply
targets paired with different inputs.

The domain discriminator Dd is responsible for checking
if the images are associated or not. The real/fake discrim-
inator Dr handles the quality of the image; specifically, it
is a multi-scale patch discriminator that can receive high-
quality images and consists of discriminator Dr1,Dr2, and
Dr3. Using multiple patches allows for the modelling of the
small and large scale shapes in the images. Finally, spectral
normalization is also added to Dr. Consequently, the structure
of this network transforms the input image to the target image
by relying on a minimax game minX maxY f . The objective
function is a combination of the input consistency loss, the
feature matching loss, and the GAN objectives:

min
G

(max
Dd ,Dr

(
3

∑
k=1

LGANdomain (G,Ddk )+
3

∑
k=1

LGANreal/ f ake (G,Drk ))

+
3

∑
k=1

LFMdomain (G,Ddk )+
3

∑
k=1

Linputreal/ f ake (G,Drk )+ωLL1 (G)),

(1)

ω is the importance weight and L the objective functions:



LGANdomain (G,Dd) = E(x,y)[log(Dd(x,y))]+Ex[log(1−Dd(x,G(x)))] (2)

LGANreal/ f ake (G,Dr) = Ey[log(Dr(y))]+Ex[log(1−Dr(G(x)))] (3)

LFMdomain (G,Dd) = E(x,y)

T

∑
i=1

Ni[||D(i)
d (x,y)−D(i)

d (x,G(x))||1] (4)

Linputreal/ f ake (G,Dr) = Ex

T

∑
i=1

Ni[||D(i)
r (y)−D(i)

r (G(x))||1] (5)

LL1 (G) = E(x,y)[||y−G(x)||1] (6)

From these objective functions, LGANreal/ f ake is the tradi-
tional GAN objective function. LGANdomain is also a minimax
game for image associations using augmented unassociated
data. In addition, the feature matching loss, LFMdomain , has
the aim of generating an image closer to a corresponding
real one, it is computed as the L1 loss between outputs
of the intermediate layers of the domain discriminator. Fur-
thermore, the input Consistency loss Linputreal/ f ake , maintains
shape and color locally, it is computed as the L1 loss
between outputs of the intermediate layers of the real/fake
discriminator. The L1 loss, LL1 , also maintains shape and
color but on a global scale. Here, x and y are the input and
output image respectively and T is the number of layers in
the discriminator. Finally, Ni is the number of elements in
each layer and D(i) is the ith layer of the discriminator.

This model (i.e. Model32) trains the images at 32 reso-
lutions to capture only global structure of the input image
and not the details. After that, the output images are post-
processed to increase their resolution and reduce blurriness.

III. PROPOSED CAD-TO-SLAM MAPPING SYSTEM
In this section, the proposed AI- and parametric-based

CAD to SLAM methods are explained.

A. Machine Learning
The same architecture as that of the proposed SLAM-

to-CAD mapping system is utilized but by switching the
inputs for the outputs, and adopting a coarse-to-fine scheme.
The generator and discriminators progressively grow by
increasing systematically the resolution of the input image
depending on the current number of epochs that are reached.
This way, any gradient problems from high resolution images
are alleviated, and the computation period is shortened. This
model is denoted as Modelprog and used for generating
SLAM maps from CAD maps.

B. Parametric Modelling
Our second approach to generate synthetic SLAM maps

which relies on parametric modeling is shown in Fig. 3.
First, the user defines a trajectory or a probabilistic roadmap
is generated using the method described in [22] with a
path between two random points. The orientation, velocity,
and acceleration are then calculated using waypoints and
time of arrival information. Then, the exteroceptive and
proprioceptive error models are implemented on the CAD
map. The deformation fields, which are two matrices of
pixel-wise location displacements in the x and y directions
(dx,dy), from both proprioceptive and exteroceptive models
are added up to generate the modelled SLAM map.
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Fig. 3. Flowchart of the parametric modelling

1) Exteroceptive Error Model: The exteroceptive sensor
(2D LIDAR) error is modelled by first defining the landmark

coordinates XL =

[
Xl
Yl

]
−D

[
cosα

sinα

]
. D is the measured slant

range in meters, which is randomly assigned to every pixel
in the image. Furthermore, α is the horizontal angle, which
is assigned randomly to each pixel. D and α values are
then smoothed using a median filter, which helps in giving
neighboring pixels similar range and angle readings.

However, D and α are both subject to errors such
that ∆D = a0 + a1D and ∆α = b1α + b2sinα + b3cosα +
b4sin2α + b4cos2α + b6D−1. Here, a0 represents the mea-
sured origin’s shift and a1 represents the effect of counter
frequency deviations as a scale error. In addition, b1 is the
scale error from the encoder, b2 and b3 depict the horizon-
tal eccentricity, b4 and b5 represent the non-orthogonality,
and b6 models the collimation axis eccentricity. Given the
values calculated in [10], we can impose a bound on these
parameters. The deformation field (dxhit ,dyhit) due to the
latter error formulation becomes: dxhit = pm(Dcos(α) −
(D − ∆D)cos(α − ∆α)) and dyhit = pm(Dsin(α) − (D −
∆D)sin(α−∆α)). Here, pm is the pixels per meter ratio.

The error formulated above is that of small measurement



noise. However, it is shown in [23] that three other errors
remain, which are errors due to random unexplained noise
Erand , unexpected dynamic objects Eshort , and failures to
detect objects Emax. The probability distributions of such
measurements is:

Pshort =

{
1

1−e−λ zt∗k
λe−λ zt

k i f 0≤ zt
k ≤ zt∗

k

0 otherwise
(7)

Pmax =

{
1 i f zt

k = zt
kmax

0 otherwise (8)

Prand =

{
1/zt

kmax i f 0≤ zt
k ≤ zt

kmax
0 otherwise (9)

λ = 0.5 is an intrinsic parameter by which the exponential
curve’s slope is obtained [24]. Pshort is assigned a random
value for every landmark. zt∗

k is the true object range, and
has the values of D. From Pshort we calculate zt

k and Eshort :

zt
k =
−log(Pshort (1−e−λ zt∗k )

λ
)

λ
; Eshort = zt∗

k − zt
k (10)

dxshort = pm(Dcos(α)−Eshortcos(α−∆α)) (11)
dyshort = pm(Dsin(α)−Eshortsin(α−∆α)) (12)

From the calculated zt
k, Pmax and Prand are also

calculated from (9). With Ranerr and Maxerr assigned
a random error between an experimentally calculated
range, dxmax,dymax,dxrand ,dyrand are calculated similarly
to dxshort ,dyshort . Lastly, the final displacement field
is a weighted sum of these displacement fields.
Zhit ,Zshort ,Zmax,Zrand are the relative error weights
and are equal to (0.4, 0.3, 0.2, 0.1) respectively [24].
Moreover, the recalculated measure of zt

k and α becomes
zmeas = D−dxL/cos(α−∆α) and αmeas = α−∆α .

2) Proprioceptive Error Model: As for the odometry error
model, from the trajectory, the nominal positions xnom,ynom
are extracted as well as angle of rotation of the wheels
γ , incremental displacement of the robot ∆dRnom,∆dLnom,
and distance traveled for every straight line in trajectory L.
From the selected robot, the nominal wheelbase bnom and the
diameter of the right and left wheels are given DRnom,DLnom.
Da is the average wheel diameter and is assumed to be
constant. Furthermore, Eb and Ed are the wheelbase and
diameter error parameters, respectively. Moreover, ∆θ and
∆d are the heading angle and displacement, respectively,
between successive poses. R is the radius of the curvature
made by the trajectory due to various error sources. From
[19], [18] the values of αEb ,αEd ,β are assigned their exper-
imental standard deviation. The parameters described can be
modelled as follows:

Eb =
90

90− (αEb +αEd )
, bactual = Ebbnominal (13)

R =
L/2

sin(β/2)
, Ed = DRact/DRact =

R+ bactual
2

R− bactual
2

(14)

Da = (DRnom +DLnom)/2 (15)

From equations of Da and Ed :

DLact =
2

Ed +1
Da, DRact =

2
(1/Ed)+1

Da (16)

∆dRact = γDRact , ∆dLact = γDLact (17)

∆dact =
∆dRact +∆dLact

2
, ∆θact =

∆dRact −∆dLact

bactual
(18)

∆xact = ∆dactcos(θk−1 +∆θact/2) (19)
∆yact = ∆dactsin(θk−1 +∆θact/2) (20)

The same is derived for the nominal counterparts. In
order to get the effect of the odometry error on the map,
the covariance matrix has to be generated. The covariance
terms are nothing but the error for its respective parameter.
The error associated with x is the only one with a detailed
derivation. The other error terms are generated similarly
σx = ∆xnom−∆xact .

a) Conversion to Map Specific Error: For the conver-
sion of the odometry error to its effect on the map, the ex-
tended Kalman filter (EKF) SLAM equations are used [25].
However, in EKF SLAM, the need to calculate the inverse
of the Covariance makes it computationally expensive. As
for the method proposed in [26], the linear and angular
odometry errors are calculated using empirical data collected
in two phases to model the effect of both linear and angular
displacements.

After the conversion of the odometry error to a map
specific error, the deformation fields (dxL,dyL) and (dxO,dyO)
are added to form (dx,dy), which is used to deform the map
accordingly.

IV. EXPERIMENTS

For all simulations Gazebo and Turtlebot3 Waffle Pi robot
were used with LDS-01 LIDAR of 180 degree sensing range.
For the machine learning method, the training was done on
Nvidia V100 PCI-E GPU with 128GB RAM for the CAD-
to-SLAM model and 15GB RAM for the SLAM-to-CAD
model, which used half the batch rate. As for the parametric
modelling, Matlab was used on a Toshiba Satellite Laptop
with an Intel core i7-5500U CPU with 2.40GHz and 8GB
RAM.

A. Data Generation

The data generation for machine learning relies on the
HouseExpo dataset CAD maps (35,000 maps) [27]. These
maps were converted into 3D environments using [28] and
then automatically converted into Gazebo world files. The
platform used was the American University of Beirut’s
(AUB) HPC cluster with AMD EPYC™ 7551P vCPU with
64GB RAM, 30GB of which were used. Using the same
vCPU specifications, parallel batch scripts were executed
for 7 minutes robotic exploration, which utilized (Turtlebot3,
Gazebo, Gmapping, Explore Lite [29], and Map Server for
map saving [30]. The total run time of generating SLAM
maps was approximately 17 days.

Due to the constraint random movements applied in the
map exploration stage, the generated SLAM maps do not all



have the same robot trajectory. That is why when training the
network to generate a SLAM map, it is actually generating
‘only one’ possible hypothesis of a SLAM map. Keeping
this in mind, the model would be learning the effect of the
map structure on the SLAM map errors.

To achieve uniformity, the generated SLAM and CAD map
images were processed by squaring, resizing, and ensuring
consistent pixel value scheme and edge thickness. In addi-
tion, maps in which the robot got stuck were removed. This
was done in 2 steps: (1) generated maps were automatically
deleted if they had a high black to white pixel count
(occupied to unoccupied), which indicates that the robot got
stuck at the beginning of the exploration near a wall; and (2)
a manual cleaning was performed by visually assessing the
maps.

Further processing to remove partially explored maps after
training results showed that the generated maps did not
corresponding to the input maps. To expedite the cleaning, a
small set of 1,468 instances were cleaned manually and 15
specific features of these images were tabulated including
pixel intensity (black, white, grey) count and ratios, number
of holes using Jacob Eliosoff’s stopping criteria [31], and
grey to white neighboring pixel count.

The Extra Trees classifier [32] was trained and the output
with probability of being complete in the range of 0.4 to
0.8 was cleaned manually (3,905 instances). This process
reduced the dataset to 4,225 image pairs. Finally, the 2D
CAD map images were cropped to have less grey areas,
which makes it easier to visually asses them. As a result,
a dataset is obtained and consists of 2D CAD map images
denoted as (A) and 2D SLAM occupancy grid map images
denoted as (B). For the training step, the data was shuffled
and split into 4,224 training pairs and 21 testing pairs for
training in the B to A direction, and 9 test pairs for training
in the A to B direction.

B. Training

All training is performed using the Adam optimizer [33]
with the initial learning rate of 0.0002 and with (0.55, 0.99)
momentum parameter values. After 70% of the training
epochs are completed, the learning rate starts decaying over
the remaining 30% of the epochs.

The network is trained on generating B from A and A from
B. The B to A direction is done to correct SLAM map errors;
whereas the A to B direction is done to model SLAM maps.
For the A to B direction ModelAB, Modelprog was used. As
for the B to A direction ModelBA, Model32 was used, since
the output that should resemble CAD maps should inherit
only the global shape of the SLAM map B without the
noise and the deformations. In addition, the preprocessing
step, which includes cropping, color jitter, and flipping the
dataset to augment it, is removed. This was done to avoid
the deletion of global features from the maps. To further
emphasize the global features, the occupied edges of the
target images were thickened.

V. RESULTS AND DISCUSSIONS

The results of this work include the output of SLAM-
to-CAD maps using ModelBA. In addition, the results of
generating SLAM maps using both ModelAB and parametric
modelling are presented.

A. SLAM-to-CAD Mapping

To asses the output, the model losses are first analyzed. As
shown in Fig. 4, the generator and discriminator losses for
both models reach a plateau at the end, which is the norm
for GANs when they have reached an optimal equilibrium.

Fig. 4. Generator G and discriminator D losses for ModelAB and ModelBA

The results for ModelBA are shown in Fig. 5. These results
are tested on the model trained until epoch 534, which was
chosen visually and graphically from the start of the plateau
in Fig. 4.

The mean square error of overlaid image intensities was
used to evaluate the generated CAD maps. The alignment
of the images was done using rotation, translation and scale
only and then the MSE was tabulated in Table I.

TABLE I
THE MSE RESULTS OF THE GENERATED CAP MAPS.

MSE1=MSE(GENERATED CAD MAPS, TARGET CAD MAPS) AND

MSE2=MSE(SIMULATED SLAM MAPS, TARGET CAD MAPS)

Map MSE2 MSE1 MSE1 < MSE2 Map MSE2 MSE1 MSE1 < MSE2

1 0.092 0.031 1 12 0.038 0.059 0
2 0.032 0.064 0 13 0.153 0.000 1
3 0.079 0.051 1 14 0.339 0.319 1
4 0.250 0.089 1 15 0.116 0.127 0
5 0.122 0.047 1 16 0.028 0.110 0
6 0.107 0.221 0 17 0.058 0.039 1
7 0.104 0.022 1 18 0.092 0.048 1
8 0.058 0.112 0 19 0.058 0.081 0
9 0.225 0.120 1 20 0.151 0.054 1
10 0.117 0.073 1 21 0.094 0.091 1
11 0.086 0.060 1 - - - -

On the one hand, in the fourth and eighth column of Table
I the ones indicate that the structure and area of the generated
CAD map is closer to the target CAD map than the simulated
SLAM map is. On the other hand, the zeros indicate the
opposite. From this table, Map 15 of Fig. 5 shows that it
was not improved; however, through visual assessment it is
clear that Map 15 was indeed improved. This sometimes
happens due to the reliance of the evaluation method on pixel
intensity values, which are limited features in the occupancy
grid maps where there are repetitive structures. Thus, 70% of
the simulated SLAM maps were improved by ModelBA. The



Fig. 5. Test results of ModelBA

remaining 30% could be due to the contraction and expansion
of rooms that is usually caused by SLAM errors. Thus, the
model did not perfectly learn this shrinkage and expansion.
This can be due to the small size of the data or the use of
GANs instead of a different deep learning architecture.

Further analysis was made by plotting a box plot shown
in Fig. 6. The interquartile range along with the median falls
almost completely in the positive region with positive values
ranging from 0 to 0.080, while the negative quartile only
reaches -0.022. This shows that the ModelBA is far more
likely to improve the simulated SLAM maps. This model
would improve localization since in SLAM the accuracy of
the localization depends on that of the map. Any remaining
errors can be corrected with loop closure.

Fig. 6. The box plot visualization of the errors in Table I

However, not all aspects of the generated CAD maps can
be assessed quantitatively. It can be seen that the errors of
nonlinear deformations in the SLAM map decrease; most of
the walls have become straight lines and most of the noise
has been removed (e.g. Map 19 in Fig. 5). In addition, the
model learned to remove additional walls and improve wall
positions (e.g. Map 11 and 10 of Fig. 5).

B. CAD-to-SLAM Mapping

As for generating SLAM maps from CAD maps, we
present the results of the learning and parametric based
approaches.

1) Machine Learning: due to the fact that ModelAB fol-
lows a progressive resolution change, the epoch and batch
size change according to the current resolution, which ex-
plains the jumps at the epochs where resolution changes in
Fig. 4. As a result of these jumps, the losses did not converge
to low values as compared to the losses for ModelBA.

The test results of ModelAB are shown in Fig. 7. Results
of Epoch 155 were chosen because they gave the best results
visually and graphically where the plateau of the trend graph
starts (Fig. 4). The assessment of the output can only be
made visually, since the output and the target will never be
completely the same, but will follow the same error structure.

Fig. 7. Test results of ModelAB

It can be seen that the output errors are very similar to
those of the target. The similar features include the addition,
removal, and deformation of occupied and unoccupied pixels.
Specifically, the results mimic the common SLAM errors of
failing to observe walls/obstacles as seen in the generated
SLAM Map 4 Fig. 7. Another common error is misplacing
observed landmarks and saving them multiple times in the
map, which is also modelled in ModelAB as seen in generated
SLAM Map 3 of Fig. 7. This is due to the odometry error,
which makes the position of the robot with respect to these
objects unstable.

Another aspect that contributes to common SLAM errors
is curving of straight lines mainly due to angular error and



curvature in linear motion. Such a case is modelled very
clearly in the results (e.g. Map 5 of Fig. 7). Finally, random
Gaussian errors are also observed in both simulated and
generated SLAM maps. This is due to LIDAR noise and
the effect of the motion of the robot whether static, which
can add additional wall thickness, or linear/angular, which
affects the feature matching accuracy. In addition, results are
generated instantaneously as opposed to the simulated maps
that are very time consuming and use high processing power.

However, there are some features that can be further
learned. For one, the shape of the unbounded additional
unoccupied pixels occasionally forms a cloudy shape instead
of the simulated scattered geometric shapes (Map 6 of Fig.
7). In addition, the common SLAM errors mentioned above
can be more exaggerated than in the simulated maps. These
few limitations can be improved by increasing the dataset
or modifying the architecture to include manually selected
features as an addition to the input images.

2) Parametric Modelling: To assess the parametric model,
it is implemented with the two odometry-to-map error con-
version methods (EKF and [26]). When running on high
resolution images, EKF was very time consuming and thus
low resolution images were used. Bilinear interpolation was
then performed to upsize the output images to (256x256).

As for the [26] method implemented on (256x256) res-
olution images, time was not an issue, the run time was in
seconds even for very high resolutions (e.g. 1600x1600). The
output of the system with the various conversion methods is
shown in Fig. 8 with the corresponding time of each run
shown in Table II.

Trajectory Simulated EKF (a) EKF (b) [26]

Fig. 8. Comparing odometry-to-map conversion methods using partial
mapping. The columns represent (1) the trajectory, (2) the simulated
SLAM map (3) the EKF method using (64x64) resolution, (4) the EKF
method using (64x64) resized to (256x256), and (5) the [26] method using
(256x256) images

On the one hand, the EKF method has a more detailed
parametric model, where most importantly the error of re-
observed landmarks is not a mere addition as is done in
[26]; it relies on a complex covariance matrix that includes
all landmarks and robot relations. However, this makes the

TABLE II
TIME TAKEN IN SECONDS BY THE PARAMETRIC MODELLING WITH

DIFFERENT CONVERSION OF ODOMETRY TO MAP ERROR METHODS

Map ID EKF (a) EKF(b) [26]
1.2 74.8616 44.6421 3.1995
2.2 15.1272 15.5864 2.62
3.2 20.2189 19.3533 2.7361
4.2 34.1854 34.1854 3.6313
5.2 94.4141 94.4141 3.225

method time consuming and in need of higher memory.
On the other hand, [26] is: (1) faster and (2) can handle
high resolutions. Thus, it avoided the bilinear interpolation
for resizing, which can cause loss of data. Finally, the
results in Fig. 8 show that the deformations are similar in
both methods. Therefore, for the comparison of Parametric
modelling with the Machine learning method, the conversion
of [26] will be used.

The results of the parametric modelling are shown in Fig.
9, which also includes the corresponding simulated SLAM
maps with the specific trajectory A used for both. Even
though ModelAB gives one possible hypothesis of a SLAM
map with no specific trajectory, it is also included in Fig 9 to
be able to compare both methods. Having the advantage of
a user defined trajectory, the parametric modelling approach
shows a closer resemblance to the simulated SLAM map of
the same trajectory than the random result of ModelAB.

Traj Sim PM ML Traj Sim PM ML

a f

b g

c h

d i

e

Fig. 9. Comparing Machine Learning to Parametric modelling approaches
using mapping of the complete floor. The columns represent (1) the
trajectory A, (2) the simulated SLAM map using trajectory A, (3) the
parametrically modelled SLAM map using trajectory A, and the machine
Learning generated SLAM map, which is not trajectory specific

From the results of Fig. 9, we can deduce that while both
methods give very realistic results, ModelAB incorporates
features not taken into consideration in the parametric model.
For instance, removal of walls and the shrinkage and expan-
sion of rooms is portrayed better with the learning approach
as shown in Instance (i) of Fig. 9. Whereas the parametric
approach doesn’t remove any structural elements; for exam-
ple, doors in the parametric approach are better preserved.
This can be an advantage of the parametric approach, since
even though wall removal is present in SLAM errors, doors
are mostly preserved.

In addition, from the results we can deduce that the



parametric approach does not model the simulated SLAM
maps’ sudden brokenness and large room shifts as shown in
Instance (a) and (e) in Fig. 9. These large errors usually occur
mainly due to vast spaces in the environment where there
are no special features and the data association fails. Thus,
it makes sense to observe better results with ModelAB when
it comes to these large errors because feature association is
mainly an environment specific aspect, which is the domain
on which ModelAB was specifically trained.

VI. CONCLUSIONS

Robotic maps are generated and used by SLAM. However,
these maps are of low quality from a semantic or geometric
point of view. In this paper, we were able to automatically
generate CAD maps from SLAM maps using GANs. The
inverse problem was also performed to create an alterna-
tive to robot map simulations and generate SLAM maps
automatically. This was achieved using either a learning-
or parametric-based modelling approach. The parametric
modelling proved more readily usable due to its ability to
generate multiple possible SLAM maps and deformation
fields; however, the learning approach is a promising start
for new research in the field due to its ability to learn fea-
tures not modelled parametrically. Future work may include
introducing different architectures with larger datasets and
additional features.
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