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Linear Convex Optimal Control
Problem Description

The general formulation of the problem is as follows:

min J =
∞∑
t=0

`(x(t), u(t))

subject to
u(t) ∈ U
x(t) ∈ X

x(t + 1) = Ax(t) + Bu(t)

x(0) = z

Two options for the optimization variable, either consider both u(t)
and x(t) as the optimization variables or just u(t)
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Linear Convex Optimal Control
Greedy Control

Choose u(t) to minimize current stage cost over allowed control input
action:

u(t) = argminw {`(x(t),w)|w ∈ U ,Ax(t) + Bw ∈ X}

This type of control in not optimal since if ||A||2 is small, x(t + 1)
does not depend much on x(t)

This model is thus subject to a ”fading memory” problem
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Linear Convex Optimal Control
”Solution” via Dynamic Programming

V (z) = inf {`(z ,w) + V (Az + Bw)|w ∈ U ,Az + Bw ∈ X}

V (z) is called the value function or the Bellman function

V (z) is a convex function

The optimal control input is given by:

u∗(t) = φ(x(t)) = argmin{`(x(t),w) + V (Ax + Bw)}
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Linear Convex Optimal Control
Linear Quadratic Regulator (LQR)

The cost function is given by:

`(x(t), u(t)) = x(t)TQx(t) + u(t)TRu(t)

Where Q � 0,R � 0,U ⊆ Rm,X ⊆ Rn

The value function is obtained as:

V (z) = zTPz

Where P ∈ Sn++, is obtained by solving the Algebraic Ricatti
Equation:

P = Q + ATPA− ATPB(R + BTPB)−1BTPA

The optimal control input is found to be:

u∗(t) = Kx(t)

Where the feedback gain K is:

K = −(R + BTPB)−1BTPA
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Linear Convex Optimal Control
Linear Quadratic Regulator (LQR) cont.

Looking back at the Algebraic Ricatti Equation, we can notice that
when solving for P, we have a Schur complement in the equation

Schur complement in ARE

Algebraic Ricatti Equation:

ATP + PA− PBR−1BTP + Q = 0

Solving for P:
P = Q + S

Where S is the Schur complement of the following matrix:[
R + BTPB BTPA

ATPB ATPA

]
S = ATPA− ATPB(R + BTPB)−1BTPA
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Finite Horizon Approximation
Problem Description

Now instead of having an infinite dimensional convex problem, we
specify a horizon T :

min J =
T−1∑
t=0

`(x(t), u(t))

subject to u(t) ∈ U , x(t) ∈ X , t = 0, ...,T

x(t + 1) = Ax(t) + Bu(t), t = 0, ...,T − 1

x(0) = z , x(T ) = 0

For t ≥ T , u(t) = 0

Thus, we are working in a finite dimensional subspace over which we
will obtain a sub-optimal control input u∗(t)
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Finite Horizon Approximation
LQR with In/finite Horizon

Example

x(t) ∈ R3, u(t) ∈ R2 and A,B are randomly chosen

X = {v | ||v ||∞ ≤ 1}, U = {w | ||w ||∞ ≤ 0.5}
Stage Cost is defined as: `(x(t), u(t)) = ||v ||2 + ||w ||2

x(0) = [0.9,−0.9, 0.9]T

(a) Cost versus horizon (b) x1(t), u1(t)
for T = 10

(c) x1(t), u1(t)
for T = ∞
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Model Predictive Control
Definition and General Applications

Also known as Receding Horizon Control (RHC), Finite Look-ahead
Control, Dynamic Linear Programming

Early implementations included control of chemical processes, supply
chain management and revenue management

These early implementations of MPC only revolved around slow
dynamic processes
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Model Predictive Control
Problem Description

For each time t, the following planning problem is solved:

min J =
t+T∑
τ=t

`(x(τ), u(τ))

subject to
u(τ) ∈ U , x(t) ∈ X , τ = t, ...,T + t

x(τ + 1) = Ax(τ) + Bu(τ), τ = t, ..., t + T − 1

x(t + T ) = 0
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Model Predictive Control
LQR with MPC

Example

(d) Comparison between
MPC and Finite Horizon
Approximation

(e) x1(t), u1(t)
for T = 10

(f) x1(t), u1(t)
for T = ∞
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Model Predictive Control
Variations

Relaxing the final state condition from x(t + T ) = 0 to
x(t + T ) = V̂ (x(t + T ))

Using current plan for K > 1 steps ahead instead of 1

Convert hard constraints to violation penalties to avoid problem of
planning problem infeasibility
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Model Predictive Control
Problem Structure

MPC problem is highly structured: Hessian is block diagonal and
equality constraint matrix is block banded

Can be solves in order of T (n + m)3 flops using an interior point
method
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Fast MPC Implementations

Fast MPC implementations can solve high dimensional problems in
matter of milliseconds
This is done by using a warm-start. This means that the initial guess
for the problem is chosen by solving for the optimal value of a
related/simplified optimization problem
Other tricks include limiting the number of Newton steps

Example

Figure: Fast MPC results in C
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Supply Chain Management
Problem Structure

n nodes for storing goods (tanks in water treatment facility)

m links between nodes (pipes)

xi (t) is the amount of commodity at node i , in period t (amount of
water in each tank)

uj(t) is the amount of commodity at node j , in period t (amount of
water in each pipe)

Incoming and outgoing node incidence matrices (flow direction in
each pipe):

A
in(out)
ij =

{
1 if link j enters (exits) node i
0 otherwise

Dynamics are linear (ignoring spoilage):

x(t + 1) = x(t) + Ainu(t)− Aoutu(t)
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Supply Chain Management
Constraints and Objective

The general formulation of the problem is as follows:

min
∞∑
t=0

(S(u(t)) + W (x(t)))

subject to
0 ≤ xi (t) ≤ xmax

0 ≤ uj(t) ≤ umax

Aoutu(t) � x(t)

(u(t)) is the shipping cost and W (x(t)) is the storage cost. A fixed
cost can also be added which might nonlinearize the problem
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Supply Chain Management

Example

n = 5, m = 9

xmax = 1, umax = 0.05

W (x(t)) =
∑n

i=1(xi (t) + xi (t)2)

W (x(t)) =
∑7

j=1 uj(t)−
∑9

j=8 uj(t)

x(0) = [1, 0, 0, 1, 1]T , V (z) = 68.2 and VMPC = 69.5

(a) Node graph (b) MPC results with T = 5 (c) Optimal results
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MPC Variations

Time varying costs, dynamics, constraints

Coupled state and input constraints

Slew rate constraints: e.g ., ||u(t + 1)− u(t)||∞ ≤ ∆umax

Stochastic Control
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Brief Introduction to Stochastic MPC

Linear dynamical system:

x(t + 1) = Ax(t) + Bu(t) + ω(t)

x0, ω0, ..., ωT−1 are random variables

Objective function:

J = E (
T−1∑
t=0

(`t(x(t), u(t)) + `T (x(T ))))

J depends on control policies φ0, ..., φT−1, which are the problem
variables

Choose the control policy φ(t) of choosing u(t)
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