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Linear Convex Optimal Control

Problem Description

@ The general formulation of the problem is as follows:

min J= ZE(X(t), u(t))

subject to

@ Two options for the optimization variable, either consider both u(t)
and x(t) as the optimization variables or just u(t)
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Linear Convex Optimal Control

Greedy Control

@ Choose u(t) to minimize current stage cost over allowed control input
action:

u(t) = argmin,, {l(x(t),w)|lw € U, Ax(t) + Bw € X'}

@ This type of control in not optimal since if ||A||2 is small, x(t + 1)
does not depend much on x(t)

@ This model is thus subject to a "fading memory” problem
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Linear Convex Optimal Control

"Solution” via Dynamic Programming

V(z) = inf{l(z,w) + V(Az + Bw)|w € U, Az + Bw € X’}

@ V/(z) is called the value function or the Bellman function

e V/(z) is a convex function
@ The optimal control input is given by:
u*(t) = ¢(x(t)) = argmin{l(x(t),w) + V(Ax + Bw)}
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Linear Convex Optimal Control

Linear Quadratic Regulator (LQR)

@ The cost function is given by:
((x(t), u(t)) = x(£) T Qx(t) + u(t) T Ru(t)
Where Q = 0,R = 0,/ CR™, X CR"
The value function is obtained as:
V(z)=z"Pz

Where P € S' ,, is obtained by solving the Algebraic Ricatti
Equation:

P=Q+ATPA—ATPB(R+BTPB)1BTPA
@ The optimal control input is found to be:
u*(t) = Kx(t)
@ Where the feedback gain K is:
K=—(R+B"PB)"'BTPA
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Linear Convex Optimal Control

Linear Quadratic Regulator (LQR) cont.

@ Looking back at the Algebraic Ricatti Equation, we can notice that
when solving for P, we have a Schur complement in the equation

Schur complement in ARE

o Algebraic Ricatti Equation:
ATP+PA—PBRIB'"P+Q=0

@ Solving for P:
P=Q+S5

Where S is the Schur complement of the following matrix:

R+ BTPB BTPA
ATPB  ATPA

S=ATPA—-ATPB(R+B"PB)'BTPA
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Finite Horizon Approximation

Problem Description

@ Now instead of having an infinite dimensional convex problem, we
specify a horizon T:

T-1
min = £(x(t), u(t))
t=0
subject to u(tyel, x(t)e X, t=0,...,T

x(t+1) = Ax(t) + Bu(t), t=0,...,T -1
x(0) =2z, x(T)=0

@ Fort>T, u(t)=0
@ Thus, we are working in a finite dimensional subspace over which we
will obtain a sub-optimal control input uv*(t)
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Finite Horizon Approximation
LQR with In/finite Horizon

Example
o x(t) € R3, u(t) € R? and A, B are randomly chosen
o X ={v[[[vl]lc <1}, U = {w] [[w]]o < 0.5}
o Stage Cost is defined as: £(x(t), u(t)) = ||v|]> + ||w]|?
e x(0) =[0.9,-0.9,0.9]"

@1 (t)

t
(a) Cost versus horizon (b) x1(t), wi(t) (c) x1(t), wi(t)
for T =10 for T = 00
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Model Predictive Control

Definition and General Applications

@ Also known as Receding Horizon Control (RHC), Finite Look-ahead
Control, Dynamic Linear Programming

o Early implementations included control of chemical processes, supply
chain management and revenue management

@ These early implementations of MPC only revolved around slow
dynamic processes
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Model Predictive Control

Problem Description

@ For each time t, the following planning problem is solved:

t+T

min J=3"tx(r), u(r))

bject t
SUDECEEO e, x(t) e X, T =t T+t

x(t1+1)=Ax(7)+ Bu(r), T=t,..,t+ T —1
x(t+T)=0
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Model Predictive Control
LQR with MPC

(d) Comparison between
MPC and Finite Horizon
Approximation

ui(t)

t
(e) xu(t), w(t)
for T =10

-05)

(f) x(t), w(t)

for T = oo
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Model Predictive Control

Variations

@ Relaxing the final state condition from x(t + T) =0 to
x(t+T)=V((t+T))
@ Using current plan for K > 1 steps ahead instead of 1

@ Convert hard constraints to violation penalties to avoid problem of
planning problem infeasibility
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Model Predictive Control

Problem Structure

@ MPC problem is highly structured: Hessian is block diagonal and
equality constraint matrix is block banded

@ Can be solves in order of T(n -+ m)3 flops using an interior point
method
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Fast MPC Implementations

@ Fast MPC implementations can solve high dimensional problems in
matter of milliseconds

@ This is done by using a warm-start. This means that the initial guess
for the problem is chosen by solving for the optimal value of a
related /simplified optimization problem

@ Other tricks include limiting the number of Newton steps

problem size QP size run time (ms)
n m T | vars constr | fast mpc SDPT3
4 2 10 50 160 0.3 150
10 3 30| 360 1080 4.0 1400
16 4 30| 570 1680 7.7 2600
30 8 30| 1110 3180 23.4 3400
Figure: Fast MPC results in C
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Supply Chain Management

Problem Structure

n nodes for storing goods (tanks in water treatment facility)
m links between nodes (pipes)

x;(t) is the amount of commodity at node /, in period t (amount of
water in each tank)

uj(t) is the amount of commodity at node j, in period t (amount of
water in each pipe)

Incoming and outgoing node incidence matrices (flow direction in
each pipe):

pin(out) _ 1 if link j enters (exits) node i
i 10 otherwise

Dynamics are linear (ignoring spoilage):
x(t+1) = x(t) + A"u(t) — A% u(t)
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Supply Chain Management

Constraints and Objective

@ The general formulation of the problem is as follows:

min > (S(u(1)) + W(x(t)))

t=0

subject to
) 0< Xi(t) < Xmax

0< Uj(t) < Umax
A%ty (t) < x(t)

@ (u(t)) is the shipping cost and W(x(t)) is the storage cost. A fixed
cost can also be added which might nonlinearize the problem
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Supply Chain Management

Example
en=5 m=9
@ Xmax = 1, Umax = 0.05
o W(x(t)) = 37, (xi(t) + xi(t)?)
o W(x(t)) =1y ui(t) — X g u(t)
e x(0) =[1,0,0,1,1]7, V(z) = 68.2 and Vjpc = 69.5

o

. o

z1(t), w3(t)
g

ugz(t), wa(t)

ug ugy

v

(a) Node graph (b) MPC results with T =5 (c) Optimal results
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MPC Variations

Time varying costs, dynamics, constraints
Coupled state and input constraints

Slew rate constraints: e.g.,||u(t + 1) — u(t)||cc < AUmax

Stochastic Control
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Brief Introduction to Stochastic MPC

Linear dynamical system:

x(t +1) = Ax(t) + Bu(t) + w(t)

@ Xy, wg,...,wT_1 are random variables

@ Objective function:
T-1
J=E(Q_ (Le(x(t), u(t)) + £r(x(T))))
t=0
@ J depends on control policies ¢y, ..., »7_1, which are the problem
variables

@ Choose the control policy ¢(t) of choosing u(t)
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